
Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 7: Cross-application Modules

Chapter 42. Sending E-mail

The Jargon file is a humorous collection of computer

slang (online at http://www.catb.org/jargon/html/), and its

entry for Zawinski's "Law of Software Envelopment"

(http://www.catb.org/jargon/html/Z/Zawinskis-Law.html)

came to mind while I was preparing this chapter. It states:

"Every program attempts to expand until it can

read mail. Those programs which cannot so

expand are replaced by ones which can."

Office is a reasonable example (if you replace 'read' with 'send') because, depending

on how you count things, its API contains three different ways of sending e-mail. If

you program in Java, the number increases to six! These approaches are summarized

in Table 1, and none are without drawbacks.

API Services/Classes Used Drawbacks

Office API

(coded in Java)

SimpleSystemMail or

SimpleCommandMail

User must click "Ok" in a "Confirm"

dialog before the e-mail is sent.

MailServiceProvider

(joint best choice)

Two DLLs must be repositioned in the

Office installation before the code will

work.

Firewalls may block it.

MailMerge Works well, but focuses on mail

merge rather than general purpose e-

mail.

The user must configure Office's e-

mail settings in Writer before the code

will work.

Java only

(no use of Office)

JavaMail: Session,

Message, Transport, and

others (joint best

choice)

Requires the download of the

javax.mail JAR.

Firewalls may block it.

Desktop.mail() Attachments are not supported as

standard in the mailto: protocol.

The e-mail client appears, and the user

must press "Send".

Process & batch file Needs a separate batch file.

Tied to the Thunderbird e-mail client.

The e-mail client appears, and the user

must press "Send".

Topics:

SimpleSystemMail /

SimpleCommandMail;

Using the

MailServiceProvider

Service; Using

JavaMail; The Desktop

API; Thunderbird

Scripting; Office Mail

Merge

Example folders: "Mail

Tests" and "Utils"

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

Table 1. Office and Java Approaches for Sending E-mail.

My aim is to write a sendMessage() function that sends a text message, optionally

including a file attachment, to a specified e-mail address. The mail will be sent

through an SMTP (Simple Mail Transfer Protocol) server that uses STARTTLS to

encrypt the link. I've tested the code using my local departmental server, and with my

Gmail account.

One surprising entry in Table 1 is Office's mail merge, which typically utilizes a

Writer template file and a spreadsheet (or database) to generate form letters addressed

to different people. These letters can be saved to files, sent to a printer, or posted out

as e-mail attachments. It's the last alternative that led me to include mail merging in

this chapter.

Table 1 identifies two "joint best choice" approaches for sending e-mail. If the mail-

out is part of other Office-related tasks, such as the run-time generation of a

document, then its best to use Office's MailServiceProvider service since it nicely

integrates with the rest of the API. However, if you plan to write a standalone e-mail

application which loads and sends ODF attachments, then JavaMail has more features

(https://java.net/projects/javamail/pages/Home).

I'll start this chapter by explaining the Office services for sending e-mail:

SimpleSystemMail/SimpleCommandMail, and the newer MailServiceProvider. Then

I'll switch to non-Office approaches, looking first at JavaMail, followed by two

techniques which don't need an extra JAR file but do require the user to interact with

the OSes e-mail client. I'll finish with mail merge in Office.

1. SimpleSystemMail/SimpleCommandMail

The SimpleSystemMail and SimpleCommandMail services in the system module

send e-mail using the OSes default e-mail client. They both implement the same

interfaces, but SimpleSystemMail is for Windows, and SimpleCommandMail for

Linux and MacOS. Figure 1 shows the services and some of their interfaces.

Figure 1. The SimpleSystemMail and SimpleCommandMail Services.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

By utilizing the machine's e-mail client, the services don't need the programmer to

enter the mail server address, its port, and a login and password, since this

information is in the client's account settings (or user profile). A drawback of this

approach is that the message passes through the client's GUI, and the user must press

a "Send" button (or equivalent) to post the message. Fortunately, XSimpleMailClient

lets the user interface be mostly hidden, but a "Confirm" dialog like the one in Figure

2 still pops up.

Figure 2. The "Confirm" Dialog when using

SimpleSystemMail/SimpleCommandMail.

This dialog can be disabled via the checkbox shown in Figure 2, but that's a bad idea

from a security viewpoint.

SimpleSystemMail and SimpleCommandMail are utilized by sendEmailByClient() in

my Mail.java utility class:

// in the Mail class

public static void sendEmailByClient(String to, String subject,

 String body, String fnm)

{

 System.out.println("Sending e-mail by client...");

 try {

 XSimpleMailClientSupplier mcSupp =

 Lo.createInstanceMCF(XSimpleMailClientSupplier.class,

 "com.sun.star.system.SimpleSystemMail");

 // windows e-mail client service

 if (mcSupp == null) {

 mcSupp = Lo.createInstanceMCF(

 XSimpleMailClientSupplier.class,

 "com.sun.star.system.SimpleCommandMail");

 // returns null on Windows; used on Linux/Mac

 if (mcSupp == null) {

 System.out.println("Unable to create client");

 return;

 }

 }

 XSimpleMailClient mc = mcSupp.querySimpleMailClient();

 // defaults to ThunderBird on my OS

 XSimpleMailMessage msg = mc.createSimpleMailMessage();

 msg.setRecipient(to);

 msg.setSubject(subject);

 XSimpleMailMessage2 msg2 = Lo.qi(XSimpleMailMessage2.class, msg);

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

 msg2.setBody(body);

 if (fnm != null) {

 String[] attachs = new String[1];

 attachs[0] = FileIO.getAbsolutePath(fnm); // attachment

 msg.setAttachement(attachs);

 }

 mc.sendSimpleMailMessage(msg,

 SimpleMailClientFlags.NO_USER_INTERFACE);

 // hides GUI but still displays a "Confirm" dialog

 }

 catch(com.sun.star.uno.Exception e)

 { System.out.println(e); }

} // end of sendEmailByClient()

The function first tries to instantiate the Windows SimpleSystemMail service, which

returns null on a Linux/Mac platform, and then switches to SimpleCommandMail

(which returns null on Windows). The resulting XSimpleMailClientSupplier instance

is used to obtain a reference to the system's default e-mail client, as represented by

XSimpleMailClient.

An XSimpleMailMessage object is initialized with the recipient, subject line, body

text, and optionally attached file. One of the quirks of the API is that the body text is

added via the XSimpleMailMessage2 subclass of XSimpleMailMessage.

A typical call to sendEmailByClient():

// part of LoMailer.java...

Mail.sendEmailByClient("xxx@xxx", "Test", "Body", "skinner.png");

The default e-mail client on Windows is the application associated with the mailto

protocol, as depicted in Figure 3.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

Figure 3. The Default E-mail Client of Windows 7.

A good description of how to set up this association can be found at

http://www.ubergizmo.com/how-to/set-default-email-client-windows/

2. Using the MailServiceProvider Service

The MailServiceProvider service utilizes a Python script called mailmerge.py which

creates a socket-based link to the specified mail server. If that link utilizes SSL (or its

successor TLS) for encrypted communication, then your code will probably crash

with the error message "No SSL support included in this Python".

This bug (https://bugs.documentfoundation.org/show_bug.cgi?id=77354) is marked

as "RESOLVED NOTOURBUG" at Office's bugzilla website which seems a bit

dismissive. The problem appears to be due to the position of Office's application

folders in Window's PATH environment variable. When Windows searches for two

DLLs, ssleay32.dll and libeay32.dll, which implement OpenSSL, it may find incorrect

versions in folders mentioned earlier in PATH. It's these incorrect DLLs that cause

Python to issue the cryptic error. One solution is to copy the correct DLLs from

Office's "program\" folder into the "program\python-core-???\lib\" folder (??? is a

version number, such as 3.3.3), thereby ensuring they're chosen first.

Another issue with switching to MailServiceProvider is that the programmer must

supply more information to setup the SMTP connection, namely the address of the

mail server, its port, and the login and password for accessing the server.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

MailServiceProvider is utilized by the Mail.sendEmail() function. Given below are

examples of how it sends e-mail to my local fivedots.coe.psu.ac.th mail server and to

the Gmail server at smtp.gmail.com:

// part of LoMailer.java...

Mail.sendEmail("fivedots.coe.psu.ac.th", 25, "ad", password,

 "xxx@xxx", "Test 1", "Body 1", "skinner.png");

Mail.sendEmail("smtp.gmail.com", 587,

 "Andrew.Davison50@gmail.com", password,

 "xxx@xxx","Test 2", "Body 2", "addresses.ods");

The Mail.sendEmail() arguments are: the mail server address, its port, the login and

password for the server, the recipient of the mail, the subject line, the body text, and

an optional attachment filename.

SMTP is built on top of a TCP network link, and in these security conscious days

many companies and universities (including mine) use firewalls to block everything

but Web links. That means I cannot use MailServiceProvider to access my Gmail

account at work since its mail server is beyond my departmental firewall. However, I

can access the fivedots departmental mail server.

MailServiceProvider is located in the mail module, along with several interfaces. The

other important service is MailMessage for constructing e-mail messages. Figure 4

shows the relationships between the services and their interfaces.

Figure 4. The MailServiceProvider and MailMessage Services.

An SMTP service is created via the XMailServiceProvider interface:

// part of Mail.sendEmail()

 :

XMailServiceProvider msp =

 Lo.createInstanceMCF(XMailServiceProvider.class,

 "com.sun.star.mail.MailServiceProvider");

if (msp == null) {

 System.out.println("Could not create MailServiceProvider");

 return;

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

}

XMailService service = msp.create(MailServiceType.SMTP);

if (service == null) {

 System.out.println("Could not create SMTP MailService");

 return;

}

A listener can be attached to the service, to report on its connection status:

// part of Mail.sendEmail()

 :

service.addConnectionListener(new XConnectionListener() {

 public void connected(EventObject e)

 { System.out.println("Connected to server " +getServerName(e)); }

 public void disconnected(EventObject e)

 { System.out.println(" Disconnected"); }

 public void disposing(EventObject e) {}

});

The connection requires address, port, protocol, login and password details, which are

supplied through XCurrentContext and XAuthenticator:

// in the Mail class

public static void sendEmail(String mailhost, int port,

 String user, String password,

 String to, String subject, String body, String fnm)

{

 : // service creation code; see above

 // initialize service data: context and authenticator

 XCurrentContext xcc = new XCurrentContext() {

 public Object getValueByName(String name)

 {

 if (name.equals("ServerName"))

 return (Object) mailhost;

 else if (name.equals("Port"))

 return (Object) new Integer(port);

 else if (name.equals("ConnectionType"))

 return (Object) "Ssl"; // or "Insecure";

 else if (name.equals("Timeout"))

 return (Object) new Integer(60);

 System.out.println("Do not recognize \"" + name + "\"");

 return null;

 }

 };

 XAuthenticator auth = new XAuthenticator() {

 public String getUserName()

 { return user; }

 public String getPassword()

 { return password; }

 };

 // connect to service

 service.connect(xcc, auth);

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

 System.out.println("Isconnected: " + service.isConnected());

I've hardwired a time of 60 seconds in XCurrentContext which sets how long the code

waits for a connection before giving up.

MailMessage utilizes an unusual create() method, and the message's body is

represented by an XTransferable instance rather than a string:

// part of Mail.sendEmail()

 :

String from = user + "@" + mailhost; // person sending this e-mail

XMailMessage msg = com.sun.star.mail.MailMessage.create(

 Lo.getContext(), to, from,

 subject, new TextTransferable(body));

The online documentation for MailMessage.create() (use "lodoc MailMessage" to

access it) is misleading in that it doesn’t mention the need for the component context,

which is obtained with the Lo.getContext() call.

My TextTransferable class implements the XTransferable interface, which defines

how different MIME data types are transferred. XTransferable is mainly used in two

ways – for packaging e-mail data (as here), and for moving data to and from the

clipboard (which I'll discuss in the next chapter).

TextTransferable lets Unicode text be treated as a transferable:

// in the Utils/ folder

public class TextTransferable implements XTransferable

{

 private final String text;

 private final String UNICODE_MIMETYPE ="text/plain;charset=utf-16";

 public TextTransferable(String s)

 { text = s; }

 public Object getTransferData(DataFlavor df)

 throws UnsupportedFlavorException

 { if (!df.MimeType.equalsIgnoreCase(UNICODE_MIMETYPE))

 throw new UnsupportedFlavorException();

 return text;

 }

 public DataFlavor[] getTransferDataFlavors()

 { DataFlavor[] dfs = new DataFlavor[1];

 dfs[0] = new DataFlavor(UNICODE_MIMETYPE, "Unicode Text",

 new Type(String.class));

 return dfs;

 }

 public boolean isDataFlavorSupported(DataFlavor df)

 { return df.MimeType.equalsIgnoreCase(UNICODE_MIMETYPE); }

} // end of TextTransferable class

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

A DataFlavor object hold three fields: the MIME type string for the data (e.g.

"text/plain"), a 'human presentable' name for the data (which can be anything), and the

corresponding Office data type.

We're not finished with transferable data since an attached file must also be packaged

in a similar way using Office's MailAttachment class and my FileTransferable class:

// part of Mail.sendEmail()

if (fnm != null)

 msg.addAttachment(new MailAttachment(

 new FileTransferable(fnm), fnm));

FileTransferable looks up the MIME type for its supplied file, and stores the file

contents in a byte array which is returned by getTransferData():

// in the Utils/ folder

public class FileTransferable implements XTransferable

{

 private String mimeType = "application/octet-stream"; // default

 private byte[] fileData = null;

 public FileTransferable(String fnm)

 {

 mimeType = Info.getMIMEType(fnm);

 try {

 fileData = Files.readAllBytes(Paths.get(fnm));

 }

 catch(java.lang.Exception e)

 { System.out.println("Could not read bytes from " + fnm); }

 } // end of FileTransferable()

 public Object getTransferData(DataFlavor df)

 throws UnsupportedFlavorException

 { if (!df.MimeType.equalsIgnoreCase(mimeType))

 throw new UnsupportedFlavorException();

 return fileData;

 } // end of getTransferData()

 public DataFlavor[] getTransferDataFlavors()

 { DataFlavor[] flavors = new DataFlavor[1];

 flavors[0] = new DataFlavor(mimeType, mimeType,

 new Type(byte[].class));

 return flavors;

 }

 public boolean isDataFlavorSupported(DataFlavor df)

 { return df.MimeType.equalsIgnoreCase(mimeType); }

} // end of FileTransferable class

MIME type lookup is implemented by Info.getMIMEType() which uses Java's

MimetypesFileTypeMap to examine a file of MIME types stored in my Utils/ folder:

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

// in the Info class

private static final String MIME_FNM = "mime.types";

public static String getMIMEType(String fnm)

{

 File f = new File(fnm);

 try {

 MimetypesFileTypeMap mftMap = new MimetypesFileTypeMap(

 FileIO.getUtilsFolder() + MIME_FNM);

 return mftMap.getContentType(f);

 }

 catch(java.lang.Exception e)

 { System.out.println("Could not find " + MIME_FNM);

 return "application/octet-stream"; // better than nothing

 }

} // end of getMIMEType()

Back in Mail.sendEmail(), all that's left to do is to send the message using

XSmtpService.sendMailMessage():

// part of Mail.sendEmail()...

XSmtpService smtpService = Lo.qi(XSmtpService.class, service);

smtpService.sendMailMessage(msg);

service.disconnect();

3. Using JavaMail

JavaMail can send and receive e-mail via SMTP, POP3 and IMAP (its website is

https://java.net/projects/javamail/pages/Home). Although JavaMail is mainly intended

to be a component of Java EE, it can be downloaded as a single JAR file

(javax.mail.jar) as an add-on to the JDK. It's being actively developed (the current

version is 1.5.6, released in mid 2016), and the website has lots of examples (see

http://java.net/projects/javamail/downloads/download/javamail-samples.zip), a FAQ,

and API documentation (at https://javamail.java.net/nonav/docs/api/).

The main textbook about JavaMail is:

JavaMail API 1st Edition

Elliotte Rusty Harold

O'Reilly, 2013

This started out as a chapter in Harold's "Java Network Programming" text, but was

separated off after the 3rd edition.

Another nice resource if you want to build a GUI e-mail client using JavaMail is

chapter 5 of The Art of Java by Herbert Schlidt and James Holmes, McGraw Hill,

2003.

JavaMail utilizes the same approach as mailmerge.py mentioned earlier – it creates an

SMTP connection using a TCP socket link to a mail server. As such it suffers from

the same problem with firewalls, which means that I can't use it with my Gmail

account when I'm at work.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

My non-Office e-mail support functions are in JMail.java, and have a similar interface

to the Office versions. For instance, JMail.sendEmail() is employed to send an e-mail

with JavaMail. The following two calls use the fivedots and Gmail servers:

// in JMailer.java...

JMail.sendEmail("fivedots.coe.psu.ac.th", 25, "ad", password,

 "xxx@xxx", "Test 1", "Body 1", "skinner.png");

JMail.sendEmail("smtp.gmail.com", 587,

 "Andrew.Davison50@gmail.com", password,

 "xxx@xxx","Test 2", "Body 2", "addresses.ods");

They're no different from my earlier Mail.sendEmail() examples, except for the name

of the support class. The arguments are: the mail server address, its port, the login and

password for the server, the recipient of the mail, the subject line, the body text, and

an optional attachment.

JavaMail sending is based around three classes: Transport, Session, and Message.

Transport specifies the underlying communication link, while Session handles the

details of the communication protocol using that link. For example, secure

communication is setup through properties passed to Session.getInstance():

// part of JMail.sendEmail()...

Properties props = new Properties();

props.put("mail.smtp.starttls.enable", "true");

props.put("mail.smtp.ssl.trust", "*"); // no certificate needed

props.put("mail.smtp.timeout", "60000");

Session session = Session.getInstance(props);

The mail server address, port, login and password details are used to create a

SMTPTransport instance (a subclass of Transport):

// part of JMail.sendEmail()...

URLName url = new URLName("smtp", mailhost, port, "",

 user, password);

Transport transport = new SMTPTransport(session, url);

transport.connect(mailhost, port, user, password);

JavaMail supports two kinds of listeners, one for the connection and the other for

message delivery. Simple implementations are given in JMail.sendEmail():

// part of JMail.sendEmail()...

 :

transport.addConnectionListener(new ConnectionListener() {

 public void opened(ConnectionEvent e)

 { System.out.println(" Connection opened to: "+e.getSource()); }

 public void disconnected(ConnectionEvent e)

 { System.out.println(" Connection disconnected"); }

 public void closed(ConnectionEvent e)

 { System.out.println(" Connection closed"); }

});

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

transport.addTransportListener(new TransportListener() {

 public void messageDelivered(TransportEvent e)

 { System.out.println(" Message delivered"); }

 public void messageNotDelivered(TransportEvent e)

 { System.out.println(" Message not delivered"); }

 public void messagePartiallyDelivered(TransportEvent e)

 { System.out.println(" Message partially delivered"); }

});

An SMTP message has fields for the recipient, subject line, body text, and an optional

attached file:

// part of JMail.sendEmail()

 :

SMTPMessage msg = new SMTPMessage(session);

msg.setReturnOption(SMTPMessage.RETURN_HDRS);

msg.setNotifyOptions(SMTPMessage.NOTIFY_SUCCESS |

 SMTPMessage.NOTIFY_FAILURE);

msg.setFrom(); // uses default

msg.setRecipient(Message.RecipientType.TO, new InternetAddress(to));

msg.setSentDate(new Date());

msg.setSubject(subject);

if (attachFnm == null)

 msg.setText(body);

else { // add body text and file as attachments

 MimeBodyPart p1 = new MimeBodyPart();

 p1.setText(body);

 String mimeType = Info.getMIMEType(attachFnm);

 MimeBodyPart p2 = new MimeBodyPart();

 FileDataSource fds = new FileDataSource(attachFnm);

 p2.setDataHandler(new DataHandler(fds)); // add data,

 p2.setFileName(fds.getName()); // filename,

 p2.setHeader("Content-Type", mimeType); // MIME type

 // create multipart

 Multipart mp = new MimeMultipart();

 mp.addBodyPart(p1); // for body text

 mp.addBodyPart(p2); // for the attached file

 msg.setContent(mp);

}

If the message contains body text and an attachment then it's necessary to add them as

MimeBodyPart objects in a Multipart container. Body text on its own can be added

using SMTPMessage.setText().

The MimeBodyPart holding the attachment must include the file's MIME type in its

"Content-type" header.

Once the message has been sent, the link is closed:

transport.sendMessage(msg, msg.getAllRecipients());

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

transport.close();

4. The Desktop API

The Java equivalent of Office's SimpleSystemMail/SimpleCommandMail service is

the Desktop.mail() method. It utilizes the OSes default e-mail client to post a

message, which means that there's no need to download the javax.mail JAR. The

delivery doesn't need to explicitly include the mail server address, port, login, and

password since they're obtained from the client's settings.

Desktop.mail() utilizes the mailto protocol to communicate with the client, but its

specification (in RFC 2368, at http://www.ietf.org/rfc/rfc2368.txt) doesn't cover

attachments. There are unofficial extensions supported by some clients, but they're not

part of Thunderbird (but see the next section).

The mailto syntax is:

"mailto:" recipients ["?" key "=" value ("&" key "=" value)*]

with

 recipients: comma-separated e-mail addresses without spaces; Outlook needs

semicolons instead of commas;

 key: subject, cc, bcc, body (note: there's no attachment keyword);

 value: URL-encoded text (e.g. space becomes %20).

An example:

mailto:xxx@xxx?subject=Hello&body=How%20are%20you%3F

Desktop.mail() is employed by JMail.sendEmailByClient(). An example of its use:

JMail.sendEmailByClient("xxx@xxx", "Hello", "How are you?");

There's no way in Desktop to suppress the client's GUI, which appears on-screen, and

the user must press the "Send" button (or equivalent) to post out the message.

JMail.sendEmailByClient() is:

// in the JMail class

public static void sendEmailByClient(String to,

 String subject, String body)

{ sendEmailByClient(to, subject, body, null); }

public static void sendEmailByClient(String to, String subject,

 String body, String fnm)

{

 if (!Desktop.isDesktopSupported()) {

 System.out.println("Desktop mail not supported");

 return;

 }

 // construct "mailto:" string for Desktop.mail()

 String uriStr = String.format("mailto:%s?subject=%s&body=%s",

 encodeMailto(to), encodeMailto(subject),

 encodeMailto(body));

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

 if (fnm != null)

 uriStr += "&attachment=\"" + FileIO.getAbsolutePath(fnm) + "\"";

 try {

 Desktop desktop = Desktop.getDesktop();

 desktop.mail(new URI(uriStr));

 }

 catch (Exception e)

 { System.out.println(e); }

} // end of sendEmailByClient()

public static String encodeMailto(String str)

{

 try {

 return URLEncoder.encode(str, "UTF-8").replace("+", "%20");

 }

 catch (UnsupportedEncodingException e) {

 System.out.println("Could not encode: \"" + str + "\"");

 return null;

 }

} // end of encodeMailto()

Following the mailto specification, the key values in the mailto string must be URL

encoded.

sendEmailByClient() has an attachment argument mainly because I've read that some

clients, such as Outlook, can accept it. But if I try to use an attachment with

Thunderbird, the call to Desktop.mail() fails.

5. Thunderbird Scripting

The reason for my uncertainty about Thunderbird supporting attachments is that

although it doesn't allow them in "mailto" strings, it can process attachments via its

GUI, and the command line (see

http://kb.mozillazine.org/Command_line_arguments_-_Thunderbird). Its command

line features open up another way of sending e-mail: by having Java execute

Thunderbird through an external script.

My Windows batch file, called TBExec.bat, applies various checks to its command

line arguments, and then invokes Thunderbird using:

thunderbird.exe -compose "to='%1',subject='%2',

 body='%3',attachment='%CD%\%4'"

The "attachment" value is an absolute file name.

The Java code uses Runtime.exec() to execute the batch file, passing it three or four

arguments:

// in the JMail class

public static void sendEmailByTB(String to, String subject,

 String body, String fnm)

{

 String mailExec =

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

 String.format("cmd /c TBExec.bat %s \"%s\" \"%s\"",

 to, subject, body);

 if (fnm != null) // add attachment argument

 mailExec += " " + fnm;

 try {

 Process p = Runtime.getRuntime().exec(mailExec);

 p.waitFor();

 System.out.println("Sent e-mail using Thunderbird");

 }

 catch (java.lang.Exception e) {

 System.out.println("Unable to send Thunderbird mail: " + e);

 }

} // end of sendEmailByTB()

As with Desktop.mail(), there's no way to stop the Thunderbird GUI from being

displayed, and the user has to press the "Send" button to send off the message.

6. Office Mail Merge

Mail merge usually involves a spreadsheet of data and a form letter stored as a Writer

template (an OTT file). Data from the spreadsheet replaces fields in the template, such

as <Name> and <Address>, with real names and addresses, creating a series of

personalized letters. Other common uses are to generate labels and envelopes.

After the letters (or labels or envelopes) have been created, they can be saved to files

(or to a single file), sent to a printer, or attached to e-mails. It's because of this last

choice that I've included mail merging here.

Figure 5 pictures the mail merge stages in more detail.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

Figure 5. Mail Merging using a Spreadsheet and a Writer Template.

6.1. Preparing the Mail Merge Inputs

Mail merge configuration is most easily done using Office's GUI and wizards, and is

excellently explained in chapter 11 of the Writer Guide (available from

https://th.libreoffice.org/get-help/documentation/).

A screenshot of a typical spreadsheet is shown in Figure 6.

Figure 6. The addresses.ods Spreadsheet.

The field names employed in the template correspond to column names in the

spreadsheet (e.g. "Title" and "First Name"). Also, if the merging involves posting out

of e-mails then there must be an "E-mail" column in the sheet; those addresses will be

used as the message recipients.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

The spreadsheet has to be converted into a data source for the merge. This is done via

Office's File > Wizards > Address Data Source menu item, as explained in the Writer

Guide. The outcome is a new ODB file with the same name as the spreadsheet

(addresses.odb in my case). This data source can be viewed from inside Calc by

selecting the menu item View > Data Sources. The GUI display is shown in Figure 7.

Figure 7. Addresses.ods with a Data Source.

The "Addresses" data source has been opened to show its "Addresses" table. Both of

these names will be needed later when we start programming.

The next step is to add fields in the "Addresses" table to the Writer template. This

involves dragging field names from the top row of the table over to the template, and

positioning them in the text. Figure 8 shows part of the resulting template, stored in

formLetter.ott.

Figure 8. Part of formLetter.ott.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 18 © Andrew Davison 2017

The fields are automatically displayed in angled brackets inside gray rectangles.

6.2. Programming the Mail Merge

The MailMerge service is located in the text module; most of its programming

involves setting properties, and then calling XJob.execute(). The main services and

interfaces are shown in Figure 9.

Figure 9. The MailMerge Service and Interfaces.

The XMailMergeBroadcaster interface is employed to attach a listener to the merging

process, and XCancellable can kill the merge.

If you look at the documentation for the MailMerge and DataAccessDescriptor

services (e.g. use "lodoc MailMerge"), you'll discover many properties in both, and

that most (but not all) of the DataAccessDescriptor properties are redefined in

MailMerge.

The coding is summarized by the following snippet from Mail.mergeTask():

// in Mail.mergeTask()

 :

XJob job = Lo.createInstanceMCF(XJob.class,

 "com.sun.star.text.MailMerge");

XPropertySet props = Lo.qi(XPropertySet.class, job);

Props.setProperty(props, "DataSourceName", dataSourceName);

Props.setProperty(props, "Command", tableName);

 : // many more properties are set...

 :

job.execute(new NamedValue[0]);

The MailMerge service is created as an XJob interface. Service properties are set, and

then the merge is carried out by calling XJob.execute(). The NamedValue array is

empty since there's no need to set any more properties using it.

6.3. Specializing the Merge

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 19 © Andrew Davison 2017

Mail.mergeTask() is passed numerous property values. To simplify its interface, the

call is hidden inside three other functions called Mail.mergeLetter(),

Mail.mergePrint(), and Mail.mergeEmail(), which focus on the three different

outcomes of a merge (see Figure 5).

Mail.mergeLetter() takes four arguments, three of which (data source name, table

name, template filename) are needed for any kind of merge:

// in the Mail class

public static void mergeLetter(String dataSourceName,

 String tableName, String templateFnm,

 boolean isSingle)

{ System.out.println("Merging letters to files...");

 mergeTask(dataSourceName, tableName, templateFnm,

 MailMergeType.FILE,

 isSingle, null, false, null, null, null);

 } // end of mergeLetter()

The following call to Mail.mergeLetter() saves six letters as "letter0.odt" to

"letter5.odt":

// in MailMerge.java...

private static final String DATA_SOURCE_NAME = "Addresses";

private static final String TABLE_NAME = "Addresses";

private static final String TEMPLATE_FNM = "formLetter.ott";

Mail.mergeLetter(DATA_SOURCE_NAME, TABLE_NAME, TEMPLATE_FNM, false);

I've defined the data source name, table name, and template filename as constants to

make the call to Mail.mergeLetter() easier to read. The boolean argument specifies

whether a single file should hold all the generated letters. The generated filenames are

hardwired inside Mail.mergeTask() to be "letter" and a number.

Six files are created since the spreadsheet (see Figure 6) has six rows of data.

Mail.mergePrint() is passed the same first three arguments (data source name, table

name, template filename), and a printer name and a boolean to signal whether

multiple print jobs should be created:

// in MailMerge.java...

Mail.mergePrint(DATA_SOURCE_NAME, TABLE_NAME, TEMPLATE_FNM,

 "FinePrint", false);

This example will send a single combined print job to the "FinePrint" printer. The

printer name can be obtained using one of the techniques explained in the previous

chapter.

Mail.mergePrint() calls Mail.mergeTask() with its printer name and multiple jobs

boolean arguments set:

// in the Mail class

public static void mergePrint(String dataSourceName,

 String tableName, String templateFnm,

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 20 © Andrew Davison 2017

 String printerName, boolean isMultipleJobs)

{

 System.out.println("Merging letters for printing...");

 mergeTask(dataSourceName, tableName, templateFnm,

 MailMergeType.PRINTER,

 false, printerName, isMultipleJobs, null, null, null);

} // end of mergePrint()

Mail.mergeEmail() is passed the data source name, table name, and template filename

as before, and the mail server's password, e-mail subject line and body string:

// in MailMerge.java...

Mail.mergeEmail(DATA_SOURCE_NAME, TABLE_NAME, TEMPLATE_FNM,

 password,

 "Hello", "Please read the attached message.");

Six e-mails are sent to the addresses listed in the "E-mail" column of the spreadsheet

(see Figure 6). Each e-mail contains the subject and body text supplied in the call, and

an attached copy of the personalized letter.

Mail.mergeEmail() calls Mail.mergeTask():

// in the Mail class

public static void mergeEmail(String dataSourceName,

 String tableName, String templateFnm,

 String passwd, String subject, String body)

{

 System.out.println("Merging letters for sending as e-mail...");

 boolean isConfigured = checkMailConfig(passwd);

 System.out.println("--> Mailhost is " +

 (isConfigured ? "" : "NOT ") + "configured");

 if (isConfigured)

 mergeTask(dataSourceName, tableName, templateFnm,

 MailMergeType.MAIL,

 false, null, false, passwd, subject, body);

} // end of mergeEmail()

The e-mailing employs the same mailmerge.py Python script as MailServiceProvider,

which means it will crash when using SSL encryption unless ssleay32.dll and

libeay32.dll have been copied from Office's "program\" folder into "program\python-

core-???\lib\". Please refer back to section 2 for more details.

mailmerge.py attempts to open a link with the specified mail server at the given port,

and usually has to supply a login and password to be allowed access. If you look back

at the arguments passed to Mail.mergeEmail() you can see that the password is

supplied, but what about the mail server address, its port, and a login name? The only

way to specify them is via Writer's option dialog. The relevant windows are shown in

Figure 10.

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 21 © Andrew Davison 2017

Figure 10. Setting Writer E-mail Options.

The left-hand dialog allows the mail server's address and port to be entered

(fivedots.coe.psu.ac.th and 25). If secure communication is required (i.e. SSL, TLS, or

STARTTLS), then the secure SSL checkbox is ticked and the "Server Authentication"

button pressed. A second dialog opens, shown on the right in Figure 10, which lets

you enter a login and password for accessing the server. It's good practice not to enter

a password since the data is stored as plain text in "registrymodifications.xcu" in

Office's user configuration directory (often the folder

$APPDATA$\LibreOffice\??\user). It's safer to pass the password to

Mail.mergeTask() at run time, as I've done in Mail.mergeEmail().

mergeEmail() calls Mail.checkMailConfig() to check if the mail server address, port

number, username, and password can be found in "registrymodifications.xcu". If the

first three aren't present then checkMailConfig() returns false and the merge is

aborted. If the password is found, then a stern warning message is printed, but

merging continues.

checkMailConfig() calls Info.getRegItemProp() which uses XPath to search through

"registrymodifications.xcu" for the specified property names and values.

6.4. mergeTask(): Implementing Mail Merging

mergeTask() is an expanded version of the code snippet given above which creates an

XJob instance, sets properties in the MailMerge service, and calls XJob.execute().

The properties settings are spread across if-tests which determine if the task involves

file creation, printing, or e-mail. Also, a listener is attached to the merge process. The

mergeTask() code:

// in the Mail class

public static void mergeTask(String dataSourceName,

 String tableName,

 String templateFnm,

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 22 © Andrew Davison 2017

 short outputType, boolean isSingle, // for FILE

 String printerName, boolean isMultipleJobs, // for PRINTER

 String passwd, String subject, String body) // for MAIL

{

 XJob job = Lo.createInstanceMCF(XJob.class,

 "com.sun.star.text.MailMerge");

 if (job == null) {

 System.out.println("Could not create MailMerge service");

 return;

 }

 XPropertySet props = Lo.qi(XPropertySet.class, job);

 // standard task properties

 Props.setProperty(props, "DataSourceName", dataSourceName);

 Props.setProperty(props, "Command", tableName);

 Props.setProperty(props, "CommandType", CommandType.TABLE);

 Props.setProperty(props, "DocumentURL",

 FileIO.fnmToURL(templateFnm));

 // vary properties based on output type

 Props.setProperty(props, "OutputType", outputType);

 if (outputType == MailMergeType.FILE) {

 Props.setProperty(props, "SaveAsSingleFile", isSingle);

 Props.setProperty(props, "FileNamePrefix", "letter");

 // hardwired filename

 }

 else if (outputType == MailMergeType.PRINTER) {

 Props.setProperty(props, "SinglePrintJobs", isMultipleJobs);

 // true means one print job for each letter

 PropertyValue[] pProps =

 Props.makeProps("PrinterName", printerName, "Wait", true);

 // synchronous printing

 // from com.sun.star.view.PrintOptions

 Props.setProperty(props, "PrintOptions", pProps);

 }

 else if (outputType == MailMergeType.MAIL) {

 if (passwd != null)

 Props.setProperty(props, "OutServerPassword", passwd);

 Props.setProperty(props, "AddressFromColumn", "E-mail");

 // hardwired column name

 Props.setProperty(props, "Subject", subject);

 Props.setProperty(props, "MailBody", body);

 Props.setProperty(props, "SendAsAttachment", true);

 Props.setProperty(props, "AttachmentName", "letter.pdf");

 // hardwired filename and type

 Props.setProperty(props, "AttachmentFilter",

 "writer_pdf_Export");

 }

 // monitor task's execution

 XMailMergeBroadcaster xmmb =

 Lo.qi(XMailMergeBroadcaster.class, job);

 xmmb.addMailMergeEventListener(new XMailMergeListener()

 {

 int count = 0;

 long start = System.currentTimeMillis();

 public void notifyMailMergeEvent(MailMergeEvent e)

Java LibreOffice Programming. Chapter 42 Sending E-mail Draft #2 (20th March 2017)

 23 © Andrew Davison 2017

 { count++;

 XModel model = e.Model;

 // Props.showProps("Mail merge event", model.getArgs());

 long currTime = System.currentTimeMillis();

 System.out.println(" Letter " + count + ": " +

 (currTime - start) + "ms");

 start = currTime;

 }

 });

 try {

 job.execute(new NamedValue[0]);

 }

 catch (com.sun.star.uno.Exception e) {

 System.out.println("Could not start executing task: " + e);

 }

} // end of mergeTask()

There are four properties that are always set:

Props.setProperty(props, "DataSourceName", dataSourceName);

Props.setProperty(props, "Command", tableName);

Props.setProperty(props, "CommandType", CommandType.TABLE);

Props.setProperty(props, "DocumentURL",

 FileIO.fnmToURL(templateFnm));

These specify the use of a spreadsheet table, the data source name, and the template

filename (as a URI).

The other properties are divided up based on the MailMergeType constants FILE,

PRINT, and MAIL (see "lodoc MailMergeType").

I've hardwired certain properties to reduce the number of arguments that need to be

passed to Mail.mergeLetter(), Mail.mergePrint(), and Mail.mergeEmail().

The listener implements the XMailMergeListener interface, and is attached through

XMailMergeBroadcaster. notifyMailMergeEvent() is called each time a new letter is

created. For my addresses.ods spreadsheet, it's triggered six times since there are six

rows of data (see Figure 6).

notifyMailMergeEvent() prints only timing information for each letter task, but more

details could be obtained by accessing the event's model.

6.5. Mail Merge Reliability

Office's mail merge wizard, which implements the "Office API" parts of Figure 5,

and so corresponds to my Mail.mergeTask()function, has a long history of crashing.

Mail.mergeTask() has always worked fine in my tests, except that it displays a

"LibreOffice has stopped working" error dialog after terminating. However, no

zombie Office processes are left over, so the dialog can be safely ignored and closed.

